1890年,克莱因在一般拉梅函数理论中,提出了自守函数。
是一种亚纯函数,给复流形的解析变换下的离散群不变,f(γ(x))=f(x),x属于M,γ属于离散群Γ。
自守函数是三角函数和椭圆函数的推广,是数学中分析、代数和几何理论交叉的产物。
出现这样的结果,往往是多个数学家的共同研究,共同承认结果。
一个数学家,提出一个新的东西,只有很多同行朝着这个方向研究,甚至竞争,才能在正确和适当的时间内,被广泛的承认和传播,数学家此刻会名声鹊起。
而如果一个数学家提出一个新东西,同行们没有朝着这个方向研究,就不会出名,换句话说,这就是研究的太超前了,超越了当时这个时代。
自守函数属于第一种情况。
戈德门特对吴宝珠说:“分析学的发展,你了解多少了?”
吴宝珠说:“微积分发展的时候开始扩展微积分的主要内容,其中研究钟摆和拉杆的问题。遇到了椭圆和双曲弧长中的无理函数积分,成为椭圆积分。”吴宝珠说着,写出了一个这样的函数,是一种积分公式,是椭圆积分近似表示。
然后看着公式,继续说:“这个函数不能用代数函数、圆函数、对数函数和指数函数。这种无理函数确实是个迷人的问题,同时也越来越普遍了。还推广到复数域。最后出现了勒让德称霸四十年的那个椭圆函数。阿贝尔和雅克比发现了椭圆函数反函数中,有类似三角函数的性质。”
戈德门特接着说:“对于微分学的发展,你了解多少?”
吴宝珠说:“有常微分和偏微分方程。跟物理学有关,力学向电磁学发展过来的,最后出现了复杂的物理运动,比如风帆运动、薄膜震动、行星运动和弦振动。以上有很多二阶线性微分方程。解决方法有几何法、不变量理论方法、群论方法,其中群论方法最成功。其中研究的最重要的是超几何方程,许多重要方程都是这个方程的特殊情形。”