趣书网

阅读记录  |   用户书架
上一页
目录 | 设置
下一章

第四百七十三章 策梅洛的ZF公理系统(集合论)(2 / 2)

加入书签 | 推荐本书 | 问题反馈 |

二,分离公理模式:一个公理元素对应的性质同时为真,才能是一个集合。

三,配对公理:两个集合中任意两个元素配对后可以形成一个集合。

四,并集公理:让两个集合元素加起来,形成一个新集合。

五,幂集公理(子集之集公理):存在以已知集合的一切子集为元素的集合。

前五个集合,消除了可能会出现罗素理发师悖论的可能性。

六,无穷公理:存在归纳集。也就是说,存在一集合x,它有无穷多元素。

七,替换公理模式(置换公理):也就是说,由F(x)所定义的函数的定义域在T中的时候,那么它的值域可限定在S中。

八,正则公理:也叫基础公理。所有集都是良基集。说明一个集合的元素都具有最小性质,例如,不允许出现x属于x的情况。

前八个是ZF公里,再加上第九个就变成ZFC公理。

九,选择公理:也叫策梅洛公理,对于任意两两不交的集合族,存在集合C,使对所给的族中的每个集合X,集合X与C的交恰好只含一个元素。

喜欢数学心请大家收藏:数学心本站更新速度全网最快。

上一页
目录
下一章
A- 18 A+
默认 贵族金 护眼绿 羊皮纸 可爱粉 夜间