趣书网

阅读记录  |   用户书架
上一页
目录 | 设置
下一章

第二百七十章 雅可比行列式(矩阵)(2 / 2)

加入书签 | 推荐本书 | 问题反馈 |

事实上,在函数都连续可微(即偏导数都连续)的前提之下,它就是函数组的微分形式下的系数矩阵(即雅可比矩阵)的行列式。

若因变量对自变量连续可微,而自变量对新变量连续可微,则因变量也对新变量连续可微。

这可用行列式的乘法法则和偏导数的连锁法则直接验证。

也类似于导数的连锁法则。

偏导数的连锁法则也有类似的公式;这常用于重积分的计算中。

雅可比行列式求导,两个变量之间是垂直的,但是也能反应出斜向的一些曲率变化力。

对雅可比矩阵的理解就是对多变量向量的求导,跟y=f'(x)代表曲线切线一样,雅可比矩阵代表了一个高维度的切空间,有了这个切空间,就可以通过设定初值迭代出无法得到解析解的微分方程组的数值解。比如三体、多摆等问题~

雅可比在想,如果是任意的高维表面,我在这个表面上,开始做出对应这个维度的切体,这个切体沿着这个高维面滑动,滑动之时,这个切体会发生变化。

可以研究这个切体的变化来推敲这个高维物体的性质。

这样的模型很难感悟,需要感悟这些数字,因为光是数字,很难形成图形,而这些切体也难于用大脑想象,同时切体中的形状也会相互交错。

喜欢数学心请大家收藏:数学心本站更新速度全网最快。

上一页
目录
下一章
A- 18 A+
默认 贵族金 护眼绿 羊皮纸 可爱粉 夜间