趣书网

阅读记录  |   用户书架
上一页
目录 | 设置
下一章

第九十三章 梅森素数(2 / 2)

加入书签 | 推荐本书 | 问题反馈 |

马林·梅森是当时欧洲科学界一位独特的中心人物,他与包括费马在内的很多科学家经常保持通信联系,讨论数学、物理等问题。17世纪时,学术刊物和科研机构还没有创立,交往广泛、热情诚挚的梅森就成了欧洲科学家之间联系的桥梁,许多科学家都乐于将成果告诉他,然后再由他转告给更多的人。

梅森还是法兰西学院的奠基人,他以一人之力,形成了一个重要学校。

也不是什么问题能让梅森以这种方式可以解决的。

时间一久,梅森发现数学中有一个重要难题一直存在,就是关于素数的分布问题,它就像一个杀不死的幽灵一般,想必也避不开,想解决也解决不了。素数是指在大于1的整数中只能被1和其自身整除的数。

就是古人已经证明素数是无穷的,但是却不知道素数的分布究竟是怎样的,找不到一个合理的通项公式。

梅森也对这个问题加以研究,知道虽然不能找到产生素数的通项公式,他想找到一个可以部分统治素数的公式也可以。

就算是一个公式,可以完全部分统治素数,那这个公式本身就有一种潜在可以统治其他素数的能力。

梅森找到了一个公式,2的p次方减1的一种素数,这种数字非同小可,根完全数还有一定联系。

梅森发现这不是个简单活,需要强大到变态的运算能力。

很多数学家也开始动用自己强大的数学能力来分析这个东西。

到2018年底却只发现有51个素数能表示成2p-1(p为素数)的形式,这就是梅森素数(如3、7、31、127等等)。

喜欢数学心请大家收藏:数学心本站更新速度全网最快。

上一页
目录
下一章
A- 18 A+
默认 贵族金 护眼绿 羊皮纸 可爱粉 夜间